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Abstract

Detecting faces in images with complex backgrounds is a difficult task.
Our approach, which obtains state of the art results, is based on a new
neural network model: the Constrained Generative Model (CGM). Gener-
ative, since the goal of the learning process is to evaluate the probability
that the model has generated the input data, and constrained since some
counter-examples are used to increase the quality of the estimation per-
formed by the model. To detect side view faces and to decrease the number
of false alarms, a conditional mixture of networks is used. To decrease the
computational time cost, a fast search algorithm is proposed. The level of
performance reached, in terms of detection accuracy and processing time,
allows to apply this detector to a real world application: the indexation of
images and videos.

Keywords : combination of models, face detection, generative mod-
esl, machine learning, neural networks, projection.

1 Introduction

To detect a face in an image means to find its position in the image plane
(x,y) and its size or scale (z). Two broad classes of algorithms can perform
this task.

An image of a face can be considered as a set of features such as eyes,
mouth, nose with constrained positions and size within an oval: an explicit
model can be used. One of the simplest and fastest method to realize the
feature extraction is the projection of the image or the edge image on the
vertical axis to find the eyes or the mouth, and on the horizontal axis to



locate the nose [22, 7, 19]. Several other methods are currently used to
perform the feature extraction: Gabor filter [25], oval detection [31, 24]...
A similarity measurement between features is then used for face recognition
or face detection task: Mahalanobis distance [7], cross-correlation [2, 7, 5],
graph matching [25], elastic matching of features [40], decision tree [19],
neural network [7], belief network [8§]...

Considering that an image of face is a particular event in the set all the
possible images, extracted windows of the image can be analyzed to deter-
mine if these windows contain faces or parts of background. A probabilistic
or statistic model can be used to analyze the pixels intensity of each sub-
window (extracted window of the image). This model can be built with
different methods: neural networks [6, 38, 12, 33, 20, 36, 29, 30, 13, 14],
principal components analysis [35, 11, 15, 17, 18, 26], Kullback distance
and maximum likelihood method [10], Support Vector Machines [27, 28]...

For face detection, the advantage of explicit models is usually the speed
of the features extraction algorithm and the similarity measurement task
in comparison to the methods directly based on the analysis of pixels inten-
sity. For explicit models, since the features have to be detected, the range
(minimum size of detected faces) and the robustness to partial occlusion of
faces are generally lower than for those based on probabilistic models. As
a consequence, the performances of probabilistic models based on direct
sub-windows evaluation are usually better.

Our approach first implements simple processes, based on standard im-
age processing and then more sophisticated processes based on statistical
analysis. In section 2, the different components of the face detector are
described: a motion filter, a color filter, a pre-network filter and a large
neural network filter based on a new model of neural network. A com-
bination of neural networks is used, to extend the face detection ability
in orientation. In section 3, a fast search algorithm for face detection is
presented. It speeds up the detection process by a factor 25. After analyz-
ing and comparing the performances of our face detector with previously
reported face detectors in section 4, section 5 describes a real application:
indexation of face images for the web crawler of France Telecom, VoiLa.

2 The face detector

Our purpose is to classify a sub-window z, of size 15x20 pixels extracted
from an image, as a face (z € V) or as a non-face (2 € NV). In this section,
we describe the different components of the face detector which consists of
four filters. These filters, from the simplest, fastest and less accurate to
the most complex, slowest and most accurate, are the following:



a motion filter typically rejects 90 % of the hypothesis (location and
scale of possible face) in the case of video sequences,

e a skin color filter typically discards 60 % of the hypothesis in the case
of color images,

e a multi-layer perceptron, called pre-network, filters 93 % of the re-
maining hypothesis,

e a modular system, based on a combination of a new neural network
model called Constrained Generative Model (CGM), processes the
0.04 % remaining hypothesis.

The architecture of the face detector is hierarchical: at each stage a
percentage of the hypothesis is excluded (figure 2). The advantage of this
architecture is first to reduce the computational time cost since the first
filters are faster. Second, assuming that filters are independent, the false
alarm rate can be improved. Indeed, estimations of the false alarm rates
are 0.1 for the motion filter, 0.4 for the color filter, 0.01 for the multi-
layer perceptron and 1077 for the modular system. If the filters were
independent, the final false alarm rate could reach 107!° ! The drawback
of this architecture is the risk of reducing the detection rate. The first three
filters must reach a very high detection rate to circumvent this problem.

2.1 Hypothesis elimination

Assuming that a face moves most of the time (speaking, breathing, eye
blinking), the motion filter is activated in video sequences. It consists of a
simple thresholded difference of images. Depending on the threshold and
on the video sequence, our experiments on automatic framing [9] show that
it typically excludes 90 % of the hypothesis.

Figure 1: Result of the color filter on a color image. White pixels correspond to skin color

When color information is available, a color filter, made up of a table
of pixels, collected manually on a large collection of face images [9], is
applied. A binary image is obtained (figure 1). The sub-windows, which



contain a small number of skin pixels, are considered as background sub-
windows. The others, corresponding approximately to 40 % of the total
number of sub-windows (depending on the image), are evaluated by the
following filter: the neural network pre-filter.

CGM 1 CGM 2 CGM 3 CGM 4 MLP
FRONT VIEW 1 FRONT VIEW 2 SIDE VIEW 1 SIDE VIEW 2

Decision

NON-FACE

grayscale image MLP
FILTER

D=—E

color image COLOR
FILTER
QRS
. .
: video sequence MOTION
- FILTER

sud-windows extracted of the image

Figure 2: The face detector is composed by four stages. The last filter is the only one which
is able to decide if the analyzed sub-windows is a face. (MLP: Multi-Layer Perceptron, CGM:
Constrained Generative Model)

The pre-network is a single multi-layer perceptron (MLP) [4, 30, 36].
It has 300 inputs, corresponding to the size of the extracted sub-windows,
20 hidden neurons, and one output (face/non-face), for a total of 6041
weights. The pre-network is trained using standard back-propagation. The
face training set is composed by 8000 front view and side view faces.
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Figure 3: On the left examples of enhanced and smoothed front view faces [0°,20°]. On the
right examples of enhanced and smoothed turned faces [20°,40°].

Examples in figure 3 represent centered faces in 15 by 20 pixels sub-
windows. Approximately 50, 000 specific non-face examples (15 by 20 pix-
els sub-windows, which do not correspond to faces) were collected using
an iterative algorithm described later. The sub-windows are enhanced by
a histogram equalization, and smoothed. Then, they are normalized by
subtraction of the average face. The obtained pre-network is a relatively
small and fast network with a very high detection rate (above 99 %) but
also with a high false alarm rate (up to 1 %). This network, unusable alone
because of its poor false alarm rate, is used as a filter which discards more
than 93 % of the hypothesis.

2.2 The Constrained Generative Model

Two types of statistical model can be applied to face detection: discrim-
inant models and generative models. Since collecting a representative set
of non-face examples is impossible, our approach to face detection is to
use a generative model. The Principal Component Analysis [32] (PCA)
technique produces axes where the variance of the set of faces is maximum
without taking into account the set of non-faces. This analysis can be used
as a generative model to detect faces in an image [35]. The likelihood of
the observed data z is then the product of two terms [26] based on two
distances :

1. adistance to the principal subspace, based on the reconstruction error
between an input sub-windows and its projection on the principal
subspace, to discard non-face example which are projected on face
examples,

2. a distance to a cluster in the principal subspace to delimit the cluster
containing the set of faces.

The underlying assumption needed is that a linear subspace fitting the
set of faces exists. If this assumption is not verified this model overesti-
mates the set of faces (figure 4). The authors propose to use a mixture
of linear subspaces to fit the manifold [26]. Another approach is to use a
non-linear auto-associative neural network. An auto-associative network,
using one hidden layer and linear activation functions performs a PCA [1].
Using three hidden layers of non-linear neurons, an auto-associative neu-
ral network is able to perform a non-linear dimensionality reduction [23].



However, owing to local minima, the obtained solution can be close to the
principal components analysis.

re

L * Principal component

O  Set of non-faces

O  Set of faces

Estimated set of faces

Figure 4: On the left, the set of faces can be fitted by a line. The estimation of the set of faces
is accurate. On the right the shape of the set of faces is non-linear, the model overestimates
the set of faces.

As in the previous case, our approach is to model the distance to the
set of faces to evaluate the probability of an input sub-window to be a face.
This distance is based on a projection P of a point z of the input space £
on the set of face V. We define this projection as :

Plz) = in(d(=,
() = argmin(d(z, y))

Where d is the Euclidean distance, A is the set of non-faces, and £ =
Y UN is the set of all possible windows, with V N AN = (.

As we have a sample of V, we approximate the projection P of z on V

as :
1 k
Pk'rm (-T) = - Z U;
k —
=1
Where vy, vy, ..., v, are the k nearest neighbors in the training set of

faces of v, the nearest face of . The number of nearest neighbors, k,
needed to approximate the nearest face example of z, decreases as the
density of the sample grows. The distance between an input vector z and
the set of faces is approximated by :

Using a threshold, this distance allows to classify an input vector as a
face or as a non-face. The accuracy of this approximation grows with the
number of examples. However, the number of floating operations grows lin-
early with the number of examples. As a consequence, the computational
time needed to evaluate the distance can be important.



To improve the previous algorithm, we propose to approximate the
projection on set, P(z), using a neural network. The goal of the learning
process is to evaluate the projection of an input example on the set. The
output layer has the same size than the input layer. The neurons of the
output layer corresponds to the coordinates in the input space £ of the
projected input (figure 5). To achieve this goal, we minimize the following
cost function :

Cw =Y _(Pw(z:) — Pnn(2))?

K3

Where W is the vector of weights of the neural network. Py is an ap-
proximation of the projection P defined before :

o if z € V, then Pyn(z) = 2,

o if 2 ¢V: Pyn(z) = Prnn(2)

To classify an input sub-window z, the distance to the set is computed
using the projection :

e D(z,V) ~ ||z —Pw(z)|, where Py (z) = Pyny(z) is the reconstructed
sub-window by the neural network,

o let z € £, then z € V if and only if ||z — Pw(z)|] < 7, with 7 € IR,
where 7 is a threshold used to adjust the sensitivity of the model.

coordinates of the projection of X
15 x 25 outputs

QOO0 eeses OOOOOO
15 x 25 inputs
input sub-windows X

Figure 5: The use of three layers of weights allows to evaluate the distance between an input
image and the set of face image: D(z;,V) ~ ||Pw(x;) — z;||. The first and last layers both
consist of 300 neurons, corresponding to the image size 15x20. The first hidden layer has 35

neurons and the second hidden layer has 50 neurons

Notice that the approximation of P by Pyy outperforms the one ob-
tained by Pgny, since face examples are reconstructed as themselves. As a



consequence, if the neural network generalizes the learned projection, its
estimation (Pyy) of the projection should be better than the one obtained
by Pknn. Moreover, when testing, the computational time does not grow
with the number of face examples. It depends of a fixed number weights,
corresponding to the architecture of the neural network.

The drawback of this approach is that it needs non-face examples to
model the projection. As we assume that the true dimension of the set
of faces is lower than the input space (the size of input sub-windows), we
can use a non-linear dimension reduction to reduce the number of non-
face examples needed. To obtain a non-linear model with a multilayer
perceptron, one hidden layer of non-linear neurons has to be used [39].
However, as we want to obtain a non-linear dimension reduction and a
non-linear relation between the sub-manifold (the compression layer) and
the projection layer (the output layer), we need an additional hidden layer
(figure 5).

In the case of standard non-linear dimensionality reduction, the re-
construction error is related to the position of a point from the principal
sub-manifold in the input space. Nevertheless, a point can be near to the
principal sub-manifold (V') and far from the set of faces (V). With the
algorithm proposed, the reconstruction error is related to the distance be-
tween a point and the set of faces. As a consequence, if we assume that
the learning process is consistent [37], our algorithm is able to evaluate the
probability that a point belongs to the set of faces.

Let y be the binary random variable, y = 1 corresponding to a face
example and y = 0 to a non-face example, we express this probability as:

_ (z=8)?

P(y=1J|z) =e <+ |, where ¢ depends on the threshold 7

We noticed on figure 6 that using a few number of counter-examples, the
Constrained Generative Model (CGM) can perform an accurate estimation
of the set of examples. However, the two counter examples used were
not chosen randomly. They belonged to the principal plane of the set of
examples. Here, we detail the algorithm we use to collect such counter-
examples. The non-face database B, ¢, corresponding to the face database
By, is collected by an iterative algorithm similar to the one used in [33] or

in [29]:
1. Byy=0,t=0, F? = 0
2. the neural network is trained with By 4 B¢,
3

. the threshold 7' is chosen such that the detection rate D!, on a
validation set composed of face sub-windows, is equal to a target
detection rate D7,

4. the false alarm rate of the model, F?, is then evaluated on a validation
set of background images,
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Figure 6: The elements of the class V (the points at the center of figures) belong to a disk.
Different sets of counter-examples (the isolated points) are used to build the CGM. The model
has the following architecture : 2 input neurons, two hidden layers of two neurons and two
ouput neurons. The obtained boundaries correspond to points z where D(z,V) = 1. The
quality of the density estimation depends on the density of the set of examples, more than on
the proximity and the distribution of counter-examples.

5. the face detection system is tested on a training set of background
images,

6. a maximum of 100 sub-images z; are collected from the training set
of background images with D (z;,V) < 77,

. an:an‘I‘{fEO,,ajn},t:t—}—l’
8. while FI=1 > F! go back to step 2.

-1

Since the non-face set (N) is too large, it is not possible to prove that
this algorithm converges in a finite time. Nevertheless, in only 8 iterations,
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Figure 7: Left to right: the counter-examples successively collected by the algorithm are
increasingly similar to real faces (iteration 1 to 8).

collected counter-examples are close to the set of faces (figure 7). In our
experiments, we set the target detection rate on a set of sub-windows to
75%. The effective detection rate, the detection rate on a set of images,
can be higher owing to the strong correlation between extracted windows
from an image.

We use a similar boosting approach to collect the set of examples :

1. Bf:BmtIO,Dt:O

2. the model is build using using the previous algorithm to collect counter-
examples and to evaluate the thresold 7,

the model is tested on the set of images containing faces I,

the faces {yo, ..., yn}, which are not detected, are manually cropped,
Bf :Bf+{y077yn}7 t:t+17

while the detection rate D; < D} go back to step 2.

[ S

To evaluate the sensibility of our algorithm to the density of the set
of examples and to the distribution of the counter-examples, we use an
illustrative and simple problem: to determine if a point belongs or not to
a disk, in a two dimensional space (figure 6). Each sample of the true
set (the disk) is drawn from an uniform distribution and some counter-
examples are chosen to observe the behavior of our model under different
initial conditions.

The most important issue (figure 6a, 6¢), is that, contrary to discrimi-
nant algorithm such as MLP or Support Vector Machines, boundary points
of the two classes are not needed in the training set to determine the bound-
ary between the two distributions. Moreover, in figure 6b, we notice that
an uniformly distributed set of counter-examples is not needed.

On the last test (figure 6d), we reduce the number of positive examples.
Here the approximation of the projection P by Py is not accurate. The
model underestimates the disk. To obtain an accurate estimation of the
distance between a point and the set of examples, a dense training set of
examples is needed.

There are several applications, such as face detection or word spotting,
where the goal is to isolate a small cluster with unknown shape in a large
space. Our algorithm is well suited to the case of dense clusters.

10



2.3 Combination of CGMs

In order to reduce the false alarm rate and to extend the face detection
ability in orientation, three architectures, combining several CGMs, have
been tested [14]: an ensemble, a conditional mixture and a conditional
ensemble.

The use of ensemble of networks to reduce the false alarm rate was
shown in [29]. The output f of the ensemble is the mean of the outputs of
each estimator f;:

f(@)= 3 filw)

Where N is the number of estimators and f;(z) = P;j(y = 1|z) the
output of the CGM 1.

As y is a binary variable, we have f;(z) = E;[y|z] and f(z) ~ E[y|z].
If all the CGM estimators are identically and independently distributed,
then, the variance of the generalization error of the ensemble is divided by
a factor N [16].

The second combination model proposed is the conditional mixture. It
uses several CGM models and a gate network as in the case of mixture
of experts [21] (figure 2). A random variable 6 is used to partition the
training set, for example in two subsets:

1. &1, the set of front view faces and the corresponding counter-examples

(0=1),
2. &, the set of side view faces and the corresponding counter-examples
(0 =2),

Each module evaluates the probability of an extracted sub-window of
the image to be a face, knowing the value of the random variable 8. Sup-
posing that the partition (# = 1,0 = 2) can be generalized to every input,
including the non-face sub-windows, the gate network learns the partition.
The output of the gate network for the CGM j is:

Jwl(z,j)=P(0 = j|z)

Where W are the weights of the gate network. Then, the output of the
modular system is:

N
Ply=1]2) =3 (fw(e,j)Ply = 1]z,0 = j)

J=1

Where the value of the random variable y = 1 corresponds to a face
sub-window, N is the number of estimator, and P(y = 1|z, = j) is the
output of the CGM j. The cost function used during the training phase of
the gate network is:

11
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Cw =YD (wzij)Ply=1zi,0 = j) — yi]*
;€€ j=1

This system is quite different from a mixture of experts introduced in
[21]: each module is trained separately on a subset of the training set
and then the gating network learns to combine the outputs. Since prior
knowledge is used to part the training set, and since each module is trained
separately, the capacity [37] of this system is less than for the more general
case: the mixture of experts.

The last architecture described, the conditional ensemble, is trained on
the face example as the conditional mixture and on the non-face example
as the ensemble (the target of the gate network is the mean output).

For example, if two estimators are used, four sets are defined:

e F is the front view face set,

e P is the turned face set, with F NP = (),

e V=FUTP is the face set,

e N\ is the non-face set, with VNN = 0,

Our goal is to evaluate P(z € V|z). Each estimator computes respec-
tively:

o Plxe Flzx e FUN,z) (CGM1(x)),

o P(x € Plz e PUN,z) (CGM2(x)),

Using the Bayes theorem (see [14] for the demonstration), we have:
P(z € V|z) = P(z € N|2)[CGM1(z)+ CGM2(z)] (1)
+P(z € Ple)CGM2(z) + P(z € Fla)CGM1(z) (2)
Then, we can deduce the behavior of the conditional ensemble:
e in N, if the output of the gate network is 0.5, and as in the case of

ensembles, the conditional ensemble reduces the variance of the error
(first term of the right side of the equation (1)),

e in V, asin the case of the conditional mixture, the conditional ensem-
ble permits to combine two different tasks (second term of the right
side of the equation (2)): detection of turned faces and detection of
front view faces.

The gate network fyy (z) is trained to calculate the probability that the
tested image is a face (P(z € V|z)), using the following cost function:

CLV = E ([flV($Z)CGM1($) + (1 — fw(acz))]CGMQ(x) — yi)2
z; €V

+ > (fw(wi) —0.5)°

z, €N
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3 The search algorithm

In this part, we focus on a way to reduce the computational time cost of
the face detection process. The detector locates faces in a sub-window of
fixed size, 15x20 pixels. To detect faces at different scales, a sub-sampling
of the original image is performed. The exhaustive search leads to evaluate
a very large number of sub-windows: all the sub-windows in all the sub-
sampled images have to be tested. The goal of the first two filters (motion
and color filter) is to eliminate hypothesis, using a very small amount of
processing time. Nevertheless, for gray scale images, these filters cannot
be used. The only remaining filter is the pre-network filter, which consists
of 6,041 weights: for each extracted sub-windows, 6,041 multiplications
and 6,041 additions must be made (the modular system (figure 2) is made
up of 140, 741 weights).

To reduce this computational time cost, a simple multi-layer perceptron
can be used [30, 36], such as our pre-network. It determines the possible
location of faces, and then a larger network is used to achieve precise
location. Another approach, developed by Ben-Yacoub [3], is to calculate
the Fourier transform of the image and of the neural network filter, and
then to process the image in the Fourier space.

This interesting approach is not adapted to a local normalization of the
image such as the histogram equalization we use. To reduce the compu-
tational time cost of the face detection process, our approach is to reduce
the number of sub-windows analyzed.

Figure 8: On the Z axis, the mean output of the modular system, over all the detected faces
sub-windows of the CMU test set 1. The (X,Y) plane is the image plane. The origin corresponds
to a face sub-window. The farther a sub-window is from the origin, the lower the output of the
modular system (G(x)).

Our face detector is very selective: its mean output on background
sub-windows is low in comparison to its mean output on face sub-windows.
Moreover, around a face sub-window, the output of our face detector is a

13



monotonous and growing function (figure 8). These properties leads us to
use the following algorithm to speed up the face detection process:

1. at each scale, each intersection point of a regular grid, corresponding
to some pixels uniformly distributed in the image (figure 9), is tested
by the detector (motion filter, color filter, neural network filter and
modular system),

2. alocal exhaustive search is performed around the points where G'(z),
the output of the last module, is greater than a first threshold,

3. at each scale, the sub-windows, corresponding to the points of the
local exhaustive search where G'(z) is greater than a second threshold,
are stored in a set V. ,

4. an overlapping elimination or summation (depending of the over-
lapping surface), between the different positions and scales of the
sub-windows of V,, is performed to locate the faces.

Figure 9: First, each intersection point of the grid is tested. Second, a exhaustive search is
performed around the points of intersection, where the output of the system is high. In this
illustrative example, 54 points of intersection of the grid are tested. Only one corresponds
to a high output of the detector. The exhaustive search is performed inside the the dashed
rectangle.

For example, in the color image of figure 9, the exhaustive search of a
face, of size within the range [15x20,150x200] pixels, needs 500,000 tests.
The use of our fast search algorithm reduces the number of tests to 25, 000.
18,600 hypothesis are discarded by the color filter. 5,800 of the 6,400
remaining sub-windows are eliminated by the pre-network filter and then
the modular system evaluates only 600 sub-windows. The processing time
is 0.3 second on a 333 MHz DEC Alpha.

4 Experimental results

In the first part of this section, a comparison between different models
and combination of models is shown, using the exhaustive search. In the

14



second part, we analyze the influence of the search algorithm on the de-
tection rate, false alarm rate and processing time. We describe our final
face detector, and compare it to other systems. Our face database contains
8000 various face examples. This database is divided into four subsets of
equal size, corresponding to different views: [0°, 20°] , [20°, 40°], [40°, 60°],
[60°, 80°]. Each subset of face examples is collected using the algorithm
described in section 2. Using these subsets, five CGMs are constructed:
the first four (CGM1, CGM2, CGM3, CGM4) corresponds to each orien-
tation range. The last one, CGMS5, uses the whole face database. 75% of
each face subset is used for the training and the 25% remaining faces allow
to select the model. During the learning process, non-face examples are
collected on a set of 100 background images. To select the model, a sec-
ond set of 100 background images is used to evaluate the false alarm rate.
Five sets of counter-examples are collected from the training set of back-
ground images, for each CGM, using the algorithm described in section 2.
Each obtained set of extracted sub-windows contains approximately 2,000
counter-examples. According to the experiments of section 2, the number
of counter-examples needed by our model is very small in comparison to the
number of counter-examples used by a discriminant multi-layer perceptron
(for example, 50,000 for the pre-network).

The size of the training windows is 15x20 pixels. The windows are
enhanced by histogram equalization to obtain a relative independence to
lighting conditions, smoothed to remove the noise and normalized by the
average face, evaluated on the training face set.

4.1 Comparison of models

In this section we compare the different combination models, described
previously, to choose the best one for our final detector. For this com-
parison, the ensemble of CGMs consists of three CGMs: a front view face
detector (CGM1), a side view face detector (CGM3) and a general face
detector (CGM5). The conditional mixture and the conditional ensemble
use the same estimators (CGM1 and CGM3). The same architecture is
used for the gate network. It has 300 inputs, corresponding to the size
15x20 pixels, 25 hidden neurons and one output.

To achieve comparison between models, two tests are performed. The
first one allows to evaluate the limits in orientation of the face detectors.
The Sussex face database, containing ten faces with ten orientations be-
tween 0 degree and 90 degrees, is used (table 1). Although, the general
face detector (CGM5) uses the same learning face database than the dif-
ferent combinations of CGMs, it has a smaller orientation range than the
conditional mixtures of CGMs, and the conditional ensemble of CGMs.
The performances, on turned faces, of the ensemble of CGMs are low. The
different models are trained on different face databases part according to
the orientation criteria. Thus, the ensemble underlying assumption is not
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Table 1 : Results on Sussex face database

orientation CGM1 CGM3 CGM5 Ensemble Conditional Conditional

(degree) ensemble mixture
0 100.0 % 100.0 % 100.0 %  100.0 % 100.0 % 100.0 %
10 62.5 % 100.0% 87.5%  100.0 % 100.0 % 100.0 %
20 50.0% 100.0 % 87.5% 87.5 % 100.0 % 100.0 %
30 125 % 100.0 % 62.5 % 62.5 % 100.0 % 100.0 %
40 0.0% 100.0 % 50.0 % 12.5 % 62.5.0 % 7.5 %
50 0.0 % 75.0 % 0.0 % 0.0 % 37.5 % 62.5 %
60 0.0 % 37.5 % 0.0 % 0.0 % 0.0 % 37.5 %
70 0.0 % 37.5 % 0.0 % 0.0 % 0.0 % 25.0 %

verified: the estimators are not identically distributed. This test shows
that the combination, by a gate neural network of different CGMs, trained
on different training set, allows to extend the detection ability to both front
view and turned faces. The conditional mixture of CGMs obtains results
in term of orientation and false alarm rate close to the best CGMs used to

construct the mixture (see table 1 and table 2).

Table 2 : Results on the CMU test set A
GM: the model trained without counter-examples, CGM1: front view face detector,

CGM3: turned face detector, CGMb5: general face detector, SWN: shared weight net-

work,

Ensemble (CGM1,CGM3,CGM5), Conditional ensemble (CGM1,CGM3,gate),
Conditional mixture (CGM1,CGM3,gate).

Model Detection rate False alarms rate False alarms
GM 84 % 1000 10~° =~ 20000
CGM1 77 % 5.43 107° 47
CGM3 85 % 6.3 107° 212
CGM5 85 % 1.36 107° 46

one SWN (Rowley95) 84 % 8.13 107° 179
Ensemble 74 % 0.71 107° 24
Conditional ensemble 82 % 0.77 107° 26
Conditional mixture 87 % 1.15 107 39

The second test allows to evaluate the false alarms rate. We use the
test set A of the CMU, containing 42 images of various quality. First,
these results show that the model, trained without counter-examples (GM),
overestimates the distribution of faces and its false alarm rate is too large
to use it as a face detector. Secondly, the estimation of the probability
distribution of face images performed by one CGM (CGM5) is more precise
than the one obtained by [29] with one SWN (see table 2). Since the results

16



of the conditional ensemble of CGMs and the conditional mixture of CGMs
are close on this test, the detection rate versus the number of false alarms
is plotted (figure 10), for different thresholds. The conditional mixture of
CGMs curve is above the one for the conditional ensemble of CGMs. Since
the conditional mixture obtains better results on the two tests, we chose
this combination model for our final face detector.

100

95 |-
a0

Detection rate
o
85 |- S

80 |-

7%

L L L L
20 30 40 50 60 70 80
Number of false alarms

Figure 10: Detection rate versus number of false alarms on the CMU test set A. In dashed
line conditional ensemble and in solid line conditional mixture.

4.2 Results of the face detector

The best performances are obtained by the conditional mixture of CGMs
Nevertheless, the false alarm rate is still high (table 2), and the detection
rate of side view faces is low (table 1). To solve this problem, four estima-
tors are used (CGM1, CGM2, CGM3, CGM4) and then combined using
the conditional mixture. The gate network has 300 inputs, 100 hidden
neurons and one output. 6000 face images are used for the training and
2000 face images to select the model. A set of 5000 non-face examples is
collected by an iterative algorithm on a set of 100 background images. A
set 80 images containing faces on complex background allows to select the
model. We compare our system with the best results published so far [30]
on the test 1 of the CMU. It consists of 130 gray scale images, containing
507 faces, most of them front view faces.

To evaluate the detection ability in orientation, we use a larger test set
than the Sussex face database. Our test set is composed of 30 individu-
als per orientation. The number of views is 10 (one per 10 degrees), 17
individuals are males and 13 are females.

In section 2, we noticed that our architecture is hierarchical (figure 2).
Then, if the pre-network has a false alarm rate on the order of one percent
and the modular system has a false alarm rate around 5.107%, and the
estimators are independent, the expected value of the false alarm rate is
1072, The result (table 3) shows that the estimators are not independent,
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Figure 11: The face detector search faces of size between 15x20 pixels and 300x400 pixels on
the CMU test set. The number of tested hypothesis by the modular system is (left to right)
2781, 704 and 132. When enhancing image containing text by an histogram equalization, a face
can appear in an extracted sub-window. Without body information, the face detector cannot
eliminate it. The rough drawing faces are mostly not detected by the face detector. Side view
faces are detected up to 90.

since the false alarm rate of the algorithm 1 and the algorithm 2 are close
(around 107®). Nevertheless, the detection rate of these algorithms are
close. Moreover, if the number of tests is the same, the computational
time cost of one test is reduced by a factor 23 (corresponding to 140,000
versus 6,000 weights) using the pre-network filter.

Our fast search algorithms (number 3 and 4 in table 3) is based on the
assumption, that the farther a sub-window is from a face sub-window, the
lower the output of the face detector. Since the detection rate of the fast
search algorithms is close to the one obtained by the exhaustive search
(algorithm 2 in table 3) this assumption is verified. The false alarm rate of
the fast search algorithm is higher than for the exhaustive search, together
with a lower number of false alarms. This is not a contradiction, since the
fast search algorithm focuses on the part of the images where the output
of the face detector is high.

The test set 1 of the CMU contains a significant (26) number of rough
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Table 3 : Results on the test 1 of the CMU
Algorithm 1: exhaustive search without the pre-network
Algorithm 2: exhaustive search

Algorithm 3: fast search (grid 3-3)

Algorithm 4: very fast search (grid 5-5)

Model Detection Missed False alarm  False
rate faces rate alarms
[Rowley,1998] 84 % 83 1.2 1077 10
[Rowley,1998] fast 77 % 117 9.6 107° 8
Algorithm 1 86 % 73 9.710°% 8
Algorithm 2 84 % 80 4.85 1078 4
Algorithm 3 83 % 88 1.6 1077 3
Algorithm 4 81 % 95 1.4 1077 1

Table 4 : Results on the test CNET set
Algorithm 1: exhaustive search

Algorithm 2: fast search (grid 3-3)
Algorithm 3: very fast search (grid 5-5)

orientation Algorithm 1  Algorithm 2  Algorithm 3

(degree)

0 99.0 % 99.0 % 99.0 %
10 97.0 % 97.0 % 97.0 %
20 95.0 % 95.0 % 95.0 %
30 99.0 % 97.0 % 95.0 %
40 96.0 % 96.0 % 95.0 %
50 92.0 % 91.0 % 90.0 %
60 89.0 % 88.0 % 87.0 %
70 66.0 % 64.0 % 62.0 %
80 45.0 % 44.0 % 42.0 %
90 23.0 % 23.0 % 22.0 %

drawing faces or non-human faces, which mostly are not detected by our
detector (figure 11). Nevertheless, our face detector has a detection rate
equivalent to the one proposed by Rowley [30] (86% versus 84%) with a
an equivalent number of false alarms (8 versus 10, see table 3). The fast
version of the search algorithm has a higher detection rate (81% versus
77%) and a lower number of false alarms (1 versus 8) than the fast version
of the CMU (see table 3). These results were obtained using only 7, 109, 000
tests versus 83,000,000 for the fast version of the CMU (a factor 11).
Moreover, our face detector is able to detect side view faces (table 4).
The detection rate of all algorithms (exhaustive search, fast search and
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very fast search) is around 90% up to 60 degrees. Finally, the performances
of our face detector in terms of detection rate, false alarm rate and compu-
tational time cost is sufficient to apply it to real world applications, such
as images and videos indexation or automatic framing.

5 Indexation of face images

Currently, most of the indexation engines on the Web are based on textual
information. Information in a web page consists both of text and images.
Therefore, the result of an image search, using a textual indexation engine,
can be very noisy. In this section, we propose an image indexation engine,
based on our face detector, in order to collect Web images containing faces
[34]. The proposed service allows to sort easily images of faces. Moreover,
access providers could store at low cost the face information: a cropped
frame, containing the face can be stored instead of the whole image (figure
12).

Figure 12: The extracted frames, after detection, contain the relevant information for index-
ation of face images, with a low storage cost.

Knowing the location (z,y,z) and number of faces, the image can be
indexed with the following labels: portrait or group picture, image con-
taining a face, and background image. Merging this information and the
textual information, the functionalities proposed by our system are the
following:

e automatic extraction of the frame containing faces to present the
search results,

e search of a particular face image: image of John Coltrane,
e search of a portrait: portrait of Bill Clinton,

e search of a group photo: picture of Beatles.

The difficulty of this problem is to process the amount of information
contained in the Web pages. The answers of the search engine must be, on
the one hand, as non-noisy as possible, and on the other hand, as numerous
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as possible. As a consequence, the false alarm rate must be very low to
obtain non-noisy answers. Since the amount of information (in this case
face images) is very important on the Web, there are two ways to collect
many image of faces: fast search and high detection rate.

The very fast search algorithm (see section 3) is used in the search
engine. To evaluate its performances, a large test set was collected on the
Web. It contains 13, 182 images of various size [108x108,1024x1024]. Most
of these images are color images, but some of them are gray-scale. 3,468
images are background images, and to ease the evaluation of the results,
the 9,714 others are selected so that the images contain only one face. For
most of them the background is complex. There are 6,004 faces of male,
and 3,710 of female. The variability of facial expressions, of orientations
(in and out of the plane of the image) and of backgrounds is very high.
The face detector search faces of size between 15x20 pixels and 300x400
pixels. To evaluate the influence of the use of the color information on the
false alarm rate, detection rate, and on the average processing time, this
test is made with and without the color filter.

Table 6 : Results on the large test set
Algorithm 1: exhaustive search without the color filter
Algorithm 2: very fast search without the color filter

Algorithm 3: very fast search with the color filter
Computer: DEC Alpha 333 MHz

Model average detection  false tests tests tests
processing rate alarms of the of the of the
time/image color filter MLP mixture

Algorithm 1 34.3s 80.1 % 151 1,669 106 117 10°

Algorithm 2 2.9s 76 % 99 143 10° 9.4 10°

Algorithm 3 1.27s 4.7 % 46 143 10° 62 10° 5.3 10°

Due to the important variability of this test set, the detection rate
of the face detector is lower than the one observed on the CMU test set
(76% versus 81% for the very fast version and 80.1 % versus 86% for the
exhaustive search). The use of the color filter reduces the detection rate
(approximately by 1%). Nevertheless, the key points for this application
are the false alarm rate to reduce the number of noisy answers, and the
average processing time per image. The use of the color filter is beneficial
for both key points and gives a very fast and accurate face detector: the
average processing time is approximately 1s and the false alarm rate is on
the order of 1 per 300 full images.
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6 Conclusion

The new neural network model proposed, the Constrained Generative
Model, performs an accurate estimation of the face set, using a small set
of counter-examples. As we noticed in section 2, the requirement of this
model is essentially a dense set of faces. The drawback of this algorithm
is the size of the model. It is overcome by the use of several pre-filters
and a fast search algorithm. The obtained face detector is one of the most
accurate of the published face detectors: it detects side view faces as well
as front view faces, its false alarm rate is on the order of 5.107% and using
the fast search algorithm proposed, the number of indexed images could
be raised to 100,000 per day (the remaining bottleneck is the retrieving
time of an image on the Web). To improve the detection rate and the
false alarm rate, more estimators can be used without significant increase
of the processing time, since the modular system processes only 0.4% of
the extracted sub-windows (without the motion filter).
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